
Data Management on the Cloud

A dynamically provisioned commodity cluster of virtual machines

with the following characteristics

•Infinite

• A large number of nodes can be commissioned in minutes

•Taxi Meter

• Most services are billed at an hourly usage level

Defining the cloud

2

• When should resources be added to a data processing system?

• Partition management for Low Cost on the cloud

• How many of these resources should be permanent?

• Materialization with Intermittent Scalability

• Where should these resources be added in the stack?

• Replication to Improve Query Performance

3 new problems for query processing

3

Transforming Data to Actionable Insights

High

Medium
Low

Engagement

Campaign Heat Map
Cube Materialization

Publishers G
eo

gra
phy

Time

� Incremental updates

� Multi-dimensional
indexes

� Multi-dimensional
partitions

© 2008 jovianDATA , Proprietary & Confidential, DO NOT Copy or Distribute jovianDATA

The Schema

Dimension Level Level Level Level

TIME YEAR MONTH DAY HOUR

TIME_WEEKLY YEAR DAY_NAME

GEO COUNTRY STATE

PUBLISHER PUBLISHER SITE_NAME SITE_TYPE

PUBLISHER_PLACEMENT SITE_NAME PLACEMENT

CAMPAIGN CAMPAIGN_NAME CAMPAIGN_DESC INDUSTRY_SEGMENT

AD SIZE HEIGHT WIDTH

ADVERTISER ADVERTISER_NAME

FLIGHT FLIGHT_NAME FLIGHT_START_DATE FLIGHT_END_DATE FLIGHT_CREATIVE_ID

RID

USERID GENDER AGE_BUCKET AGE

Materializing the Cube

YEAR MONT
H

DAY HOUR COUNT
RY

STATE WEEK PUBLIS
HER

SITE_N
AME

CAMPA
IGN_N

AME

CAMPA
IGN_DE

SC

SIZE HEIGHT FLIGHT
_NAME

FLIGHT
_START

_DATE

FLIGHT
END

DATE

FLIGHT
_CREAT

IVE_ID

2009 June 3 1 US CA 21 AOL AOL

Autos

Ford Spring 2x2 10 11/06 11/08 Banner

Generate 26 combinations for each fast changing

dimension
Major data explosion here – so use more nodes

Consolidate the fast partition vectors for all tuples
Heavy duplicate elimination here

MONTH DAY HOUR COUNTRY STATE WEEK

… … … … …

Hash Partition on Fast Dim Vector (Maintain balance via SLA)

MONTH DAY HOUR COUNTRY STATE WEEK

… … … … …

MONTH DAY HOUR COUNTRY STATE WEEK

… … … … …

MONTH DAY HOUR COUNTRY STATE WEEK

… … … … …

Life of an MDX Query

Family Tuple
Identification

Parse Tree

Tuple
Identification

MDX Query

Group tuples
into contig.

cube

Union

(
Union

(
Union
(

CrossJoin
(

{[Promotion Media].[All Media]}

,{[Product].[All Products]}
)

,CrossJoin
(

{[Promotion Media].[All Media]}

,[Product].[All Products].Children
)

)

,CrossJoin
(

{[Promotion Media].[All Media]}
,[Product].[All Products].[Drink].Children
)

)
,Union
(

Union
(

CrossJoin
(

[Promotion Media].[All Media].Children

,{[Product].[All Products]}
)

,CrossJoin

(
[Promotion Media].[All Media].Children

,[Product].[All Products].Children
)

)

,CrossJoin
(
[Promotion Media].[All Media].Children

,[Product].[All Products].[Drink].Children
)

)
)

) ON ROWS

FROM [Sales]
WHER E [Time].[1997];

Tuple Set Generation from complex

trees of CrossJoin, Union, Predicates

etc.

7

Convert incoming query to a set of multi-dimensional tuples

Tuple Access Layer
YEAR MONTH DAY HOUR COUNTRY WEEK STATE PUBLISHE

R

SITE_NAM

E

CAMPAIG

N_NAME

CAMPAIG

N_DESC

SIZE HEIGHT FLIGHT_N

AME

FLIGHT_ST

ART_DATE

FLIGHT_E

ND_DATE

FLIGHT_C

REATIVE_I

D

2009 June 3 1 US * * AOL
Autos

* * * * * Ford * * Banner

MONTH DAY HOUR COUNTRY STATE WEEK

June 3 1 US * *

YEAR PUBLISHER SITE_NAM

E

CAMPAIGN

_NAME

CAMPAIGN

_DESC

SIZE HEIGHT FLIGHT_NA

ME

FLIGHT_ST

ART_DATE

FLIGHT_EN

D_DATE

FLIGHT_CR

EATIVE_ID

2009 AOL
Autos

* * * * * Ford * * Banner

Locate the partition for the fast dimension values

Note here that STATE is set to ‘*’ but it has already been materialized

Therefore, we eliminate any sum across all states

On the local partition, do the aggregation to calculate the ‘*’

5 types of partitions maintained in the cloud

9

Exclusive

EC2 nodes that are

allocated for specific keys

Permanent

EC2 nodes that are permanently

allocated to service queries

Archive

S3 storage that is not accessible

directly by the query engine

Intermittent

EC2 nodes that are allocated by

the loading engine

Temporary

EC2 nodes that host temporary

replicas

Taxi Meter
Reducing permanent resources

10

Usage Patterns

• Usage patterns vary throughout the day and throughout the week

• A couple of periods of heavy usage daily, followed by moderate to low usage

4 – 6am 8 – 10am 10 – Noon Noon – 4pm 4 – 6pm

Data Loading

Cube

Materialization

Users review

standard

reports looking

for campaign

exceptions

Users run ad

hoc queries to

understand

campaign

exceptions
Users make any

necessary

campaign

adjustments

Quick review of

key reports by

users prior to

heading home

C
o
m

p
u

tin
g

 R
e
s

o
u

rc
e
s

Traditional Computing Approach
• Traditional computing approach buys enough computing resources to meet peak usage

demand

• Even many cloud “solutions” provide only the peak computing power option with no
way to dynamically reallocate the computing resources to match the current usage
demand

• Result: Substantial waste in computing resources and money

4 – 6am 8 – 10am 10 – Noon Noon – 4pm 4 – 6pm

C
o

m
p

u
ti
n
g

 R
e

s
o

u
rc

e
s

$$ $$ $$ $$

Maximum Computing Resources

“Adaptive” Computing Economics
• Finely matching computing resources to user usage patterns can provide a 50% to 90%

cost savings versus the traditional computing resource allocation approach

• Result: Lower cost with improvements in availability and performance

4 – 6am 8 – 10am 10 – Noon Noon – 4pm 4 – 6pm

C
o

m
p

u
ti
n
g

 R
e

s
o

u
rc

e
s

$$ $$ $$ $$

Maximum Computing Resources

Adaptive
Computin

g
Resources

Intermittent scalability
Using large number of nodes during load time

14

Managing CapEx with Role Based Clusters

SINGLE

CLUSTER FOR

DATA CLEANSING, LOAD AND QUERY

15TB

100 NODES

Monthly Cost = $28,800

Role Based Clusters

BUILD CUBE

HIBERNATE CUBE

QUERY READY PARTITIONS

UI Ad Server Data, Search Engine Data

DATA CLEANSING

2 hours daily for load on 10 nodes

Query on 5 nodes

Monthly Cost = $2,052

Selective replication for hot partitions

17

Partition level query slowdown

• Dynamic statistics

• The query execution system logs status for each partition

• If a particular partition is regularly lagging behind, it is marked for replication

• Static statistics

• The query execution system identifies skews in specific partitions

• Partitions with size skew etc are marked for replication

Operational (EC2)

P1 P2

P3 P4 P5 P6

P1 P2 P3 P4

P5 P6

Partition Size Average

Execution

Time

P1 1MB 1.2s

P2 2MB

P3 1.5MB 60s

…

Fixing partition level slowdown

• If the query execution system detects SLA violations

• Adds two new temporary nodes (Temp 1)

• Creates new replicas for the ‘hot’ partitions

Operational (EC2)

P1

Node 1

P2

P3 P4 P5

Node 2

P6

P1 P2 P3

Node 3

P4

P5 P6

Temporary (EC2)

P3

Temp 1

P6

P3

P6

Key level query slowdown

• Key Level Dynamic statistics

• A particular key takes time for materializing various facets of the cube

Operational (EC2)

P1 P2

P3 P4 P5 P6

P1 P2 P3 P4

P5 P6

Keys Size Average

Execution

Time

P3. K1 20MB 120s

…

Fixing partition level slowdown

• If the query execution system detects SLA violations for a particular key

• Adds a new temporary node (Temp 2)

• Denormalizes the key such that all data for that key is materialized

Operational (EC2)

P1

Node 1

P2

P3 P4 P5

Node 2

P6

P1 P2 P3

Node 3

P4

P5 P6

Temporary (EC2)

KN

Materialized

Node 5

Partitions can be in 5 different states

22

Isolated (EC2)

Operational (EC2)

Data Retrieval Module

Access replicas

if base partition

is overwhelmed

Access base

partitions is not

materialized

Load (temporary EC2)

Create replicas if partition is

hot

Isolate keys on

separate

machines

Retrieve data

from

materialized

Post load, archive the

partitions

Replicated (temporary EC2)

Archive (S3/EBS)

